Процессы восстановления — Доменный процесс

Основными восстановителями в доменном процессе являются углерод, монооксид углерода и водород. Элементы, попадающие с шихтой в доменную печь, в зависимости от их превращений в условиях доменной плавки можно разделить на практически полностью восстанавливающиеся (Fe, Ni, Co, Pb, Си, Р, Zn и др.); частично восстанавливающиеся (Si, Mn, Cr, V, Ti и др.); не претерпевающие восстановления (Са, Mg, Al, Ba и др.).

Процесс восстановления железа из оксидов согласно принципу А. А. Байкова о последовательности превращений протекает ступенчато путем перехода от высших оксидов к низшим по схеме: Fe2O3 -> Fe3O4 -+ FeO -> Fe (выше 570 °C) или Fe2O3 — Fe3O4 -> -> Fe (ниже 570 °C). При этом в соответствии с диаграммой Fe—О в системе наряду с низшими оксидами и металлом возникает ряд твердых растворов.

В зависимости от вида газообразного продукта восстановления (в доменной печи) различают прямое и непрямое (косвенное) восстановление. В первом случае продуктом является СО, а во втором —СО2 или Н2О.

3 Образование чугуна и его свойства

Металлическое железо — продукт восстановления руд — появляется в нижней части шахты печи и распаре. При большом избытке углерода в печи получение чистого железа даже в начальный момент его появления затруднительно. При извлечении из шахты проб материалов в них находят губчатое железо, содержащее около 1—2 % С. По мере опускания материалов в доменной печи и их дальнейшего нагрева железо растворяет в себе углерод в увеличивающемся количестве. При этом температура плавления его снижается, металл плавится и в виде капель стекает в горн. Окончательный состав чугуна формируется в горне печи.

Можно выделить 4 стадии науглероживания железа в современной доменной печи.

На первой стадии происходит выпадение сажистого углерода на поверхности свежевосстановленного железа по реакциям (t =400-1000 °С):

Все факторы, способствующие протеканию этих реакций, вызывают увеличение содержания углерода в чугуне (рост давления в печи, высокая восстановимость шихт, рост основности, повышение содержания водорода в газовой фазе и др.).

Вторая стадия связана с первой и характеризуется диффузией Ссаж в массу металлического железа (950—1150 °С):

Третья стадия — плавление металла с содержанием примерно 2 % С при температуре выше 1150 °С и стекание капель по коксовой насадке с растворением углерода кокса в металле:

Четвертая стадия науглероживания — это процесс, протекающий в горне. Здесь, с одной стороны, продолжается растворение

углерода кокса в жидком металле (связано с температурой в горне, временем пребывания и составом чугуна в горне), а с другой — идет окисление углерода чугуна в фурменных очагах (связано с размером печи).

По аналогии с процессом восстановления первые 2 стадии науглероживания могут быть названы «косвенным» науглероживанием, а вторые две — «прямым» науглероживанием.

В современных условиях доменной плавки, таким образом, содержание углерода в чугуне зависит главным образом от параметров плавки, колеблется в интервале 4,3—5,3 % .

Окончательное содержание углерода в чугуне зависит от устойчивости карбидов, которая во многом определяется наличием в чугуне примесей. Марганец, хром, ванадий образуют карбиды, способствуя увеличению содержания углерода в чугуне. Кремний, алюминий, фосфор, медь, наоборот, способствуют снижению содержания углерода в чугуне. Поэтому в ферромарганце (6,5— 7 % С) и зеркальном чугуне (5—5,5 % С) всегда больше углерода, чем в передельном, а в ферросилиции (1,5—2,0 % С) и литейных чугунах (3,5—4 % С) меньше.

К важнейшим свойствам чугуна относят его химический состав, однородность состава, количество неметаллических включений, форму выделения углерода, количество растворенных газов, физический нагрев.

Схема, которую вы видите, можно сказать, уникальная (рис. 1). На ней показано самое основное, главное, связанное с доменным процессом.

Прежде всего приведены качественный, а по углероду – и количественный состав чугуна и суть его передела в сталь (рис. 1, а). Доменная печь (домна) показана в разрезе, схематично (рис. 1, б).

Снизу через фурму (устройство для подвода дутья) поступают горячий воздух, кислород, метан, а навстречу движется шихта – смесь, состоящая из кокса (источник энергии и восстановитель), подготовленного рудного концентрата и флюса (последний для связывания пустой породы в шлаки). Домну через колошник (верхняя часть шахтных доменных плавильных печей) покидает доменный газ, содержащий до 30% СО. Домна – сложнейшее инженерное сооружение высотой более 60 м и диаметром 10 м, снабженное системой контроля и управления, предназначенное для выплавки чугуна – продукта химико-восстановительных процессов.

Далее на схеме показаны основные химические реакции доменного процесса (рис. 1, в). Это – горение кокса в зоне над горном (нижняя часть домны, где происходит горение топлива). Шлак выполняет также функцию защиты чугуна от окисления. Далее происходит собственно восстановление железа, затем – восстановление примесных элементов и науглероживание железа и, наконец, образование шлаков.

Температура шлака на выпуске служит важным технологическим показателем для персонала, обслуживающего доменную печь. Холодный шлак при выпуске через шлаковые летки является сигналом похолодания печи. Температура нижнего шлака, выдаваемого из печи вместе с чугуном также меняется даже в продолжение одного выпуска чугуна, что позволяет сделать некоторые выводы о тенденциях в изменении теплового состояния доменной печи. В среднем, как уже указывалось, нормальные конечные доменные шлаки перегреты против температуры плавления по диаграммам состояния на 200—300 °С. Температура шлаков, например, при получении передельного чугуна составляет 1500— 1600 °С, т. е. обычно на 50—100 °С выше температуры чугуна.

Количество шлака в расчете на 1 т чугуна колеблется от 0,3 до 1,0 т в зависимости от металлургического района. Общей тенденцией является то, что по мере повышения содержания железа в концентратах обогащения руд в агломерате и в окатышах выход шлака неуклонно снижается. Уменьшение количества вязких масс в печи сопровождается улучшением ее хода, позволяет улучшить распределение и использование газов в печи, повысить форсировку хода, уменьшить затраты тепла на плавление и перегрев шлака, на разложение известняка в печи, снизить потери тепла, уносимого большим количеством шлака на выпуске. В свою очередь это приводит к понижению удельного расхода кокса и росту производительности доменных печей.

Уменьшение выхода шлака на 100 кг/т чугуна в современных условиях дает экономию кокса 20—25 кг/т чугуна и увеличивает производительность печи на 3—4 %. Экономия кокса рассчитана без учета снижения расхода тепла на разложение флюса, количество которого также уменьшается при снижении выхода шлака. Другими словами, приведенная экономия кокса относится к современной практике доменного производства, когда разложение флюса осуществляется на агломерационной ленте или ленте для обжига окатышей.

Процессы восстановления

Основная задача доменного процесса — обеспечение как можно более полного извлечения железа из этих оксидов путем их восстановления. Восстановление заключается в отнятии кислорода от оксида и получении из него элемента (или же оксида с меньшим содержанием кислорода). Его осуществляют с помощью восстановителя — вещества, к которому переходит кислород благодаря тому, что у восстановителя большее химическое сродство к кислороду, чем у восстанавливаемого элемента. Таким образом, в процессе восстановления одно вещество теряет кислород (восстанавливается), а другое приобретает его (окисляется).

В соответствии с выявленными академиком А.А. Байковым закономерностями восстановление оксидов железа протекает ступенчато от высших к низшим:

Поскольку при температурах ниже 570°С оксид FeO неустойчив и разлагается (на магнезит и Fe), схема восстановления при температурах ниже 570°С следующая:

Восстановителями оксидов железа в доменной печи служат углерод, оксид СО и водород. Восстановление углеродом принято называть прямым восстановлением, а газами — косвенным. Реакции косвенного восстановления оксидом углерода следующие:

при температуре > 570°С

FeO + CO = Fe + CО2 + 16 060; (3)

Их характерной особенностью является то, что продуктом реакции всегда является CО2, и то, что они идут без затрат тепла. Реакции прямого восстановления углеродом протекают с образованием СО и требуют значительных затрат тепла.

Главное, что отличает прямое восстановление от косвенного, это расходование углерода, а это означает, что с развитием реакций прямого восстановления сокращается количество углерода, достигающего фурм.

В целом ход процесса восстановления железа в доменной печи можно охарактеризовать следующим образом. Во всем объеме печи, начиная от верха колошника до участков с температурой 900-1000°С, протекают процессы косвенного восстановления газом СО и отчасти водородом. В этой зоне косвенного восстановления все высшие оксиды железа успевают восстановиться до FeO, а часть FeO восстанавливается до железа, причем частицы восстановленного железа обнаруживаются уже в колошнике. Вместе с тем часть FeO восстанавливается до железа прямым путем в зоне высоких температур (> 900-1000°С). При этом в зонах с температурами свыше 1100-1250°С, когда сформировался шлак, железо восстанавливается прямым путем из жидкого шлака при стекании его капель вниз между кусками кокса. Железо при восстановлении получается в твердом виде; частицы железа, восстановившиеся из материалов, находящихся в твердом виде, имеют форму губки.

В доменной печи железо восстанавливается почти полностью. Степень восстановления железа составляет 0,99-0,998, а это означает, что 99-99,8 % железа переходит в чугун и лишь 0,2-1,0 % переходит в шлак.

При выплавке передельных чугунов марганец в доменную печь попадает в составе агломерата и иногда в составе добавляемых небольших количеств марганцевых руд, а при выплавке ферромарганца в составе марганцевого агломерата или марганцевых руд.

Восстановление марганца из оксидов протекает ступенчато от высших оксидов к низшим:

Высшие оксиды марганца непрочны и восстанавливаются газом СО при невысоких (200-500°С) температурах в верхней части шахты печи по следующим реакциям косвенного восстановления:

Таким образом, восстановление MnO2 до MnО связано с выделением большого количества тепла — около 2870 кДж на 1 кг марганца.

Низший оксид марганца — MnО является химически более прочным и восстанавливается только прямым путем, требуя значительного расхода тепла:

MnО + С = Мn + СО — 288290 Дж (8)

Для более полного восстановления марганца необходимы высокие температуры в горне, увеличение поступления тепла в горн и повышенная основность шлака.

Восстановительные условия доменной плавки таковы, что восстанавливается не весь марганец, внесенный шихтой. При выплавке передельных чугунов степень восстановления марганца составляет 55-65 %, остальная часть марганца остается в шлаке в виде MnО. Из сказанного следует, что содержание марганца в чугуне будет в первую очередь определяться его содержанием в шихтовых материалах.

Читать статью Железные руды — виды, месторождения. Доменный процесс

Кремний присутствует в рудах главным образом в виде кремнезема, а в агломерате — в виде силикатов железа и кальция и силикатов промежуточного состава — оливинов СаОх • FeO (2-x) • SiО2. Сродство кремния к кислороду очень велико, поэтому он может восстанавливаться в печи только прямым путем по следующей реакции:

SiО2 + 2С = Si + 2СО — 636760 Дж (9)

В доменной печи при температурах 1200-1250 0 С уже сформирован жидкий шлак, и поэтому основная часть кремния восстанавливается прямым путем из SiО2, находящегося в шлаке при стекании капель шлака в горн между кусками кокса. Условиями, благоприятствующими восстановлению кремния, является высокая температура в районе горна, а так же кислые шлаки, т.е. содержащие мало СаО, т.к. СаО связывает SiО2. Поскольку в доменной печи основность шлака, определяемая основностью используемого офлюсованного агломерата, является относительно постоянной, количество восстановленного кремния зависит, прежде всего, от температуры в горне и прилегающем к нему объему печи.

Фосфор поступает в доменную печь в основном с агломератом и железными рудами в виде фосфата 3СаО • Р2О5 и иногда 3FeO • Р2О5 • 8Н2О. Фосфат 3СаО • Р2О5 интенсивно восстанавливается при температурах 1000-1200°С и более с большой затратой тепла:

Читать статью  Технология производства чугуна

3СаО • Р2О5 + 5С = 2Р + 3СаО + 5СО — 1634000 Дж, (10)

причем часть его восстанавливается из шлака.

Фосфат железа менее прочен и восстанавливается при 900-1000°С газом СО и частично углеродом, например:

Образующиеся при этих реакциях фосфор и фосфид Fe2P активно растворяются в железе, и практически весь фосфор шихты переходит в чугун. Таким образом, единственным способом получения чугуна с низким содержанием фосфора является использование чистых по фосфору рудных материалов.

Процесс восстановления в доменной печи

Процесс восстановления железа идет с постепенным отщеплением кислорода и переходом окислов от высших степеней к низшим по такой схеме:

Восстановление железа из окислов в доменной печи

В действительности в отдельно взятой молекуле окиси железа процесс идет скачкообразно; в общей же массе восстановление протекает путем постепенного отнятия кислорода. Так, например, до полного перехода Fе3О4 в FеО образуются промежуточные вещества типа FеmОn (где n/m изменяется от 1 до 4/3), представляющие собой твердые растворы Fе3O4 и FеО, называемые вюститом. Также при переходе от Fe2О3 к Fе3O4 и от FеО к Ре могут образоваться твердые растворы. При постепенном переходе в массе вещества от Fе2О3 до Ре состояния Fe2О3, Fе3O4, FеО и Fе являются «узловыми» точками, знаменующими собой скачкообразный переход от одного качества к другому; этот переход суммирует незначительные количественные изменения, имевшие место при удалении кислорода из твердых растворов.
Прочность химических соединений, в том числе окислов, определяется «свободной» энергией при постоянном давлении (изобарный потенциал):

Восстановление железа из окислов в доменной печи

Поскольку абсолютные значения H, Z и S не могут быть вычислены, пользуются разностями значений этих величин для двух состояний:

Восстановление железа из окислов в доменной печи

Чем выше температура, тем более значительная часть энергии вещества связана, так как молекулы беспорядочно движутся с большими скоростями. Эта «связанная» энергия уменьшает максимальную работу, в данном случае — химическое сродство металла к кислороду, т. е. прочность окисла.
На рис. 48 приведены величины ΔZ для окислов железа при различных температурах. Из диаграммы видно, что изобарный потенциал с повышением температуры возрастает, следовательно, максимальная полезная работа А’м убывает. Наименее прочным является окисел Fe2О3, переходящий в Fe3O4 на воздухе в отсутствии восстановителя при температуре 1383°. Соединение FеО и О2 в Fe3О4 при температуре выше 843° К менее прочно, чем закись железа FеО и магнитная окись Fe3О4, полученные из Fе и О2; при t Читать статью Восстановление кремния, марганца, фосфора и прочих элементов » Все о металлургии

Такое направление процесса может быть объяснено на основе принципа подвижного равновесия: в газовой фазе увеличилось против равновесного содержание СО и уменьшилось содержание СО2, отчего реакция, стремясь восстановить равновесие, идет в направлении расходования избыточной СО и образования недостающей СО,. Процесс идет до тех пор, пока газ не достигнет равновесного состава, отвечающего точке а.
Если же имеющаяся FеО будет израсходована раньше, чем газовая фаза достигнет равновесного состава, то процесс прекратится, и газ будет иметь некоторый состав, лежащий выше точки а и находящийся в поле Fе. При этом газ не будет взаимодействовать с Fе.
Подобным образом можно проследить процессы, протекающие в любом из трех полей, и состояния, характеризуемые равновесными кривыми.
Рассматривая рис. 49 и 50, видим, что любой окисел железа нижележащего поля, внесенный в газовую среду вышележащего поля, восстанавливается этим газом, а вещество верхнего поля, внесенное в газовую фазу нижележащего поля, окисляется; иначе говоря, газовые фазы верхних полей недонасыщены кислородом по отношению к твердым фазам нижележащих полей, и, наоборот, газовые фазы нижних полей пересыщены кислородом по отношению к твердым фазам верхних полей.
При постоянном составе газа, но переменной температуре, происходят аналогичные изменения. Например, при температуре 650° и составе газа 30% СО и 70% СО2 (точка с, рис. 49) система находится в поле Fе3O4. При этом газовая фаза является нейтральной по отношению к Fе3О4. С повышением температуры до 780° (точка d) газовая фаза окажется в равновесии с Fе3О4 и FеО. Дальнейшее повышение температуры вызовет реакцию Fе3O4 + СО → 3FеО + СО2 при одновременном изменении состава газа: будет убывать СО и возрастать СО2. На диаграмме это выразится движением по кривой равновесия названной реакции. Когда же Fe3O4 будет израсходовано, например, в точке е, установится постоянный состав газа. Будет изменяться только температура, причем движение продолжится по направлению ef — в область FеО.
Рассуждая подобным образом, можно представить переходы фаз и в других областях диаграммы, учитывая возможные изменения температуры и состава газа.
Нетрудно понять, почему на рис. 49 кривая восстановления Fе3O4 до FеО идет слева вниз, кривая же восстановления FеО до Fе — вверх, а на рис. 50—обе кривые нисходящие. Это находится в соответствии с тепловыми эффектами рассматриваемых реакций. Например, реакция FеО + СО → Fе + СО2 — экзотермическая, а Fе + СО2 → FеО + СО — эндотермическая. При повышении температуры равновесие должно сместиться в сторону поглощения тепла; при этом должно убывать СО2 и возрастать СО. Линия равновесия этой реакции на рис. 49 и дает снижение СО2 при росте температуры. Для эндотермических реакций восстановления окислов железа с повышением температуры, наоборот, убывает СО или Н2 и возрастает СО2 или Н2О, что отражается нисходящими линиями на рис. 49 и 50.
Влево от точки, отвечающей 570°, на обеих диаграммах нанесены равновесные линий для

При температурах ниже 570° невозможно существование FeO, и восстановление происходит непосредственно из Fe3O4 до Fе. Если при более высокой температуре существует FеО, то при температуре ниже этой границы FеО распадается на Fe3O4 и Fе по реакции:

Линия равновесия Fе3O4 + 4СО ⇔ 3Fe + 4СО2 (рис. 49) имеет уклон влево вниз, что соответствует положительному тепловому эффекту реакции; аналогичная реакция с водородом эндотермична, поэтому линия ее равновесия имеет наклон влево вверх от точки 570° (рис. 50).
В точке, отвечающей температуре 570°, имеется равновесие Fe3O4, FeO и Fe с CO и CO2. При этих условиях нельзя произвольно менять температуру и состав газа, не нарушив равновесия.
При восстановлении Fe3O4 до FeO окисью углерода и водородом по мере повышения температуры требования к содержанию восстановителя в газе уменьшаются, равновесная линия идет вправо — вниз. Следовательно, при низких температурах требуется иметь в газе сравнительно более высокое содержание CO или H2, чем при повышенных температурах. В доменной же печи, наоборот, концентрация CO в газе падает с понижением температуры. Противоречие это и порождает задержку восстановления Fe4O4 при умеренных температурах, вследствие чего наиболее интенсивное превращение Fe3O4 в FeO происходит не в верхних, а в средних и нижних участках шахты уже наряду с восстановлением Fe из FeO.
Рассматривая равновесие FeO + CO ⇔ Fe + CO2 (рис. 49), видим, что линия равновесия идет вправо, вверх, т. е. с повышением температуры требуется понижение CO2 в газе. Так как газ не всегда полностью отвечает этим требованиям, то FeO еще сохраняется в средней и нижней частях шахты печи при температурах порядка 900—1000°.
Нетрудно подсчитать количественные значения коэффициентов m, n, m’, n’ приведенных выше уравнениях восстановления. Определим, например, значение коэффициента n при 800°, воспользовавшись диаграммой рис. 49. Из линии равновесия реакции FeO + CO ⇔ Fe + CO2 видно, что при 800° газовая смесь состоит приблизительно из 63% CO и 37% CO2. Для протекания процесса восстановления газовая фаза должна быть несколько обогащена окисью углерода в сравнении с равновесным составом. Поэтому восстановительный процесс окажется возможным, по крайней мере, при условии, что CO будет в газовой фазе примерно вдвое больше, чем CO2 (67% CO и 33% СО2).
Следовательно, в реакции FeO + nCO → Fe + CO2 + (n—1)СО должно быть:

При более высоких температурах n должно быть больше трех. Аналогичным образом можно рассчитать значения коэффициентов для других восстановительных реакций.
Для сравнения условий равновесия при взаимодействии окислов железа с окисью углерода и водородом совместим обе диаграммы (рис. 49 и 50) в одной (рис. 51). Видно, что при температурах ниже 810° (1083°К) окись углерода может быть использована лучше, чем водород, так как в газовой фазе допустимо большее содержание СО2, чем Н2О, при температурах же выше 810° водород используется лучше, чем окись углерода. Иначе говоря:

Восстановление железа из окислов в доменной печи

Рассмотрим подробнее условия восстановления железа в печи. В доменной печи восстановление происходит главным образом посредством окиси углерода. Независимо от восстановительной работы окись углерода может претерпевать химическое превращение, описываемое реакцией:

Восстановление железа из окислов в доменной печи

Равновесные составы при постоянном давлении смещаются в сторону возрастания СО, и убывания СО при понижении температуры и охлаждении системы и, наоборот, в сторону убывания СО2 и возрастания СО при сообщении системе тепла извне.
С другой стороны, при постоянной температуре и заданном давлении устанавливается также определенное отношение СО : СО2 в равновесной смеси. При этом согласно принципу подвижного равновесия реакция 2СО → СО2 + С должна смещаться вправо при увеличении давления и влево при уменьшении давления. В первом случае отношение СО : СО2 в равновесной смеси уменьшается, во втором — увеличивается.

Восстановление железа из окислов в доменной печи

Таким образом, для каждого давления в системе координат «температура — состав газовой фазы» получаем кривую, а для разных давлений — семейство кривых. Каждая точка на кривой определяет состав газовой фазы (СО и СО2), равновесный при заданных температуре и давлении.
Данные о равновесных состояниях приведены на рис. 52. Две равновесные линии построены для 1 ат и 0,4 ат.

Восстановление железа из окислов в доменной печи

Каждая кривая представляет совокупность точек, дающих равновесные состояния, и делит поле диаграммы на две части. Любая точка поля соответствует неравновесному составу газа при некоторой температуре, но этот состав при условиях, заданных точкой поля, стремится к равновесному.
Так, газ состава 20% СО и 80% СО2 при температуре 700° (точка а), стремясь к равновесию, будет изменяться так, что в нем будет возрастать СО и убывать СО2 до тех пор, пока не установится состав; 60% СО и 40% СО2 при давлении 1 ат (а1) или 70% СО и 30% СО2 при давлении 0,4 ат (а2). Наоборот, газ, содержащий 80% СО и 20% СО2, при той же температуре (точка Ь) будет изменяться в сторону уменьшения СО и возрастания СО2, пока не будут достигнуты те же составы. Область влево от каждой кривой, следовательно, определяет течение экзотермической реакции выделения сажистого углерода (реакция Белла), а вправо от кривой — эндотермической реакции восстановления углекислоты углеродом до окиси углерода. Реакция СО2 + С → 2СО, усиливающаяся с повышением температуры и притоком тепла, протекает весьма быстро, так что равновесие устанавливается почти мгновенно; обратная же реакция 2СО → СО2 + С протекает, наоборот, медленно, и при низкой температуре для достижения равновесного состава требуются иногда десятки часов. Катализатор, например свежевосстановленное губчатое железо, ускоряет течение этого процесса.
Между тем, в доменной печи газы находятся в течение нескольких секунд. Такой продолжительности достаточно для достижения равновесных состояний при высоких температурах, но совершенно недостаточно при низких, так как катализатора (свежевосстановленного железа) при этих температурах еще нет.
Если газ на колошнике при температуре 300° содержит около 10% СО2 и 30% СО, то при пересчете на сумму СО + СО2 = 100% это соответствует 25% СО2 и 75% СО (точка с). С повышением температуры газ обедняется углекислотой, и при температуре 1000° в нем содержится ничтожное количество СО2 и около 100% СО (точка d). Если провести пунктирную линию, соединяющую точки с и d, можно увидеть, как резко реальные составы газов в печи отличаются от равновесных при температурах ниже примерно 700—800°. Рассматриваемая линия на рис. 52 отражает ту же закономерность, что и линия II на рис. 47.
На рис. 52 отражены реальные изменения состава газа, полученные при исследованиях на разных горизонтах различных печей. Прямые I и II ограничивают область возможных изменений состава газа в разных случаях. Линии І или II с равновесной кривой пересекаются приблизительно при температуре 900°, иногда при 700—1000°.
Следовательно, при температурах ниже 700—800° реальный газ содержит СО больше, а СО2 — меньше равновесного. При высоких температурах, когда в равновесии может находиться ничтожное количество СО2, реальный и действительный составы газов совпадают. Если же в действительном газе СО2 окажется больше равновесного, то через доли секунды и это количество СО2 перейдет в CO, приблизив реальный газ к равновесному.
При совмещении диаграмм рис. 49 и 52 в одной системе координат получаем рис. 53. Если бы в печи достигались равновесные составы смесей СО и СО2 в присутствии углерода, то при температуре ниже 647° (точка d) не удалось бы получить FеО из Fе3O4, а при температуре ниже 685° (точка е) невозможно было бы восстановление FеО до Fе. В этом нетрудно убедиться, взяв любой состав газа при этих температурах.

Читать статью  Железо. Свойства железа и его соединений

Читать статью Доменный процесс — Знаешь как

Восстановление железа из окислов в доменной печи

В действительности, однако, поскольку равновесие не достигается, FеО и Fе могут появиться при температурах ниже 647 и 685°.
Из рассмотрения кривых рис. 52 и 53 видно, что при температурах выше 700—900°, когда равновесные составы газа содержат ничтожные количества СО2, а скорость реакции СО2 + С → 2СО велика, образующаяся СО2 будет переходить в СО, расходуя углерод и поглощая тепло. При этом указанный процесс, слабо развитый при 700°, усиливается по мере повышения температуры, а при температуре выше 1000°, по-видимому, вся возникающая в газовой фазе углекислота расходуется на указанную реакцию. Наоборот, при температуре ниже 700° и частично при 700—900° имеющийся углекислый газ не реагирует с углеродом, так как содержание СО2 в реальных газах намного ниже равновесного.
Поэтому реакция получения железа из его закиси до температуры 700—900° может быть выражена так:

Восстановление железа из окислов в доменной печи

При этом выделившаяся СО2, не реагируя с углеродом, уносится с газом из печи. Так же могут быть написаны в тех же условиях и реакции восстановления Fе3O4 из Fе2О3 и FеО из Fе2O4 или реакции восстановления Ре окисью углерода непосредственно из Fе2О3 и Fе3O4.
При температурах выше 900—1000° (и частично при 700—900°) СО2, будет реагировать с углеродом, давая окись углерода, почему сам процесс восстановления может происходить без избытка СО (коэффициент n при СО в этом случае близок к единице), поскольку получающаяся СО2 немедленно расходуется на реакцию с углеродом и не успевает окислить восстановленное железо. Процесс в этом случае представится реакциями:

Восстановление железа из окислов в доменной печи

Экзотермически восстановительный процесс, газообразным продуктом которого является углекислота, называется непрямым (косвенным) восстановлением; эндотермический же процесс в результате которого образуется окись углерода, называется прямым восстановлением.
Следовательно, отделение кислорода от окисла осуществляется в обоих случаях с помощью СО. Разница только в температурных условиях процесса и в конечном (газовом) продукте восстановления.
Реакция FеО + С → Fе + СО, описывающая процесс прямого восстановления, указывает только начальное и конечное состояния системы, совсем ничего не говоря о том. каким путем процесс этот совершился.
Можно также допустить, что углерод действительно отнимает кислород у закиси железа. Имеются данные о более или менее значительном развитии этого процесса в некоторых случаях. Однако этот вопрос еще не решен, и многие утверждают, что контакт угле-рода-восстановителя непосредственно с окислом возможен лишь в ограниченном масштабе. Вместе с тем значительное количество железа, переходящего в чугун, восстанавливается как раз прямым путем, т. е. с поглощением тепла, но, по-видимому, большей частью через газовую фазу.
При прямом восстановлении окись углерода играет как бы роль переносчика кислорода: она извлекает кислород из руды, проникая вглубь куска через поры, куда твердый углерод проникнуть не может, и передает этот кислород углероду.
Аналогичную роль в доменном процессе играет и водород с тем отличием, что, будучи гораздо лучшим восстановителем, чем окись углерода, водород ускоряет восстановление не только твердым углеродом, но и окисью углерода.
Там, где восстановление окисью углерода или углеродом протекает недостаточно энергично, восстановление водородом пойдет энергичнее. При этом полученный водяной пар в газовой фазе реагирует с СО или с углеродом, отдавая кислород и восстанавливаясь снова до водорода. Водород облегчает восстановление железа окисью углерода так же, как окись углерода облегчает восстановление твердым углеродом.
Процесс может быть выражен для случая взаимодействия образовавшегося водяного пара с окисью углерода

Восстановление железа из окислов в доменной печи

Восстановление железа из окислов в доменной печи

Аналогичные реакции могут быть написаны для Fе2О3 и Fе3O4.
При этом окончательный тепловой эффект в каждом из двух рассмотренных случаев не зависит от участия в процессе водорода и водяного пара; он оказывается равным эффекту непрямого (II, 17) либо прямого (II, 18) восстановления. Водород также является переносчиком кислорода от окисла к углероду или окиси углерода, подобно тому, как в ранее рассмотренном процессе прямого восстановления аналогичную роль играла окись углерода. Водород, таким образом, в доменном процессе в качестве восстановителя может не расходоваться, несмотря на его огромное участие в процессе восстановления; при этом окончательное его содержание в газе может не измениться, а иногда даже и увеличиться.
Реакция восстановления Fе из Fе3O4 непосредственно

возможная при температурах ниже 570°, вряд ли может быть заметно развита, так как температуры, при которых эта реакция протекает, недостаточны для интенсивного ее течения.
Поэтому до температуры 570°, окислы железа практически восстанавливаются в незначительной степени. При более же высоких температурах сначала получается FeO из Fe3O4, а затем Fe из FeO. При этом для протекания первой реакции требуется меньшее содержание-СО в смеси CO + CO2, чем для второй. Уже это свидетельствует с том, что Fe3O4 восстанавливается до FeO в большей мере, чем FeO до Fe. Кроме того, с повышением температуры для восстановления Fe3O4 до FeO требуется меньшее количество CO в ее смеси с CO2, в то время как газ при этом обогащается окисью углерода и обедняется углекислотой. Это также говорит об облегчении с повышением температуры восстановления Fe3O4 до FeO. Практически уже при 800—900° значительная часть Fe3O4 переходит в FeO. Между тем, получение металлического железа из его закиси, связанное с отделением кислорода от наиболее прочного окисла, протекает в более тяжелых условиях. Требуются относительно большие количества СО в смеси CO и CO2; с возрастанием температуры эти требования повышаются, и допускаются все меньшие количества CO2 в равновесной смеси. Поэтому процесс восстановления Fe из FeO, даже при самых благоприятных условиях, не успевает завершиться до 900° и продолжается при более высоких температурах. При температурах выше 900—950° процесс протекает с поглощением тепла, как процесс прямого восстановления железа.
Если восстановление до FeO из Fe2O3 и Fe3O4 успевает, как правило, в значительной мере совершиться при так называемых умеренных температурах 800—900°, то восстановление от FeO до Fe не заканчивается полностью при этих температурах, а всегда в заметном количестве происходит при высоких температурах.
Поэтому принимают, что восстановление до FeO происходит косвенным путем, между тем как восстановление Fe из FeO совершается частично по реакции непрямого восстановления, частично же — прямого.
Следует учесть, что восстановление от Fe3O4 и FeO до Fe происходит не всегда из свободных окислов; часто процесс этот совершается над твердым раствором FeO в Fe3O4, содержащим разные относительные количества FeO и Fe3O4, т. е. более или менее богатым кислородом. Восстановление идет, по-видимому, так, что сперва газ действует на свободную Fe3O4, а затем — на Fe3O4, находящуюся в твердом растворе переменного (от wmaxO2 до wminO2) состава, и, наконец,— на FeO.
При этом wmaxO2 — твердый раствор с максимальным содержанием Fe3O4 и минимальным FeO; wminO2 — твердый раствор с минимальным содержанием Fe3O4 и максимальным FeO.
Восстановление из Fe3O4 в растворе затруднено, поэтому часть Fe3O4 иногда также восстанавливается прямым путем. Однако в расчетах для простоты обычно считают всю Fе3О4 восстанавливающейся непрямым путем.

Похожие записи:

  1. Диссертация на тему «Математическое моделирование сложных технологических процессов доменного производства методами нелинейной динамики», скачать бесплатно автореферат по специальности ВАК РФ 05.13.18 — Математическое моделирование, численные методы и комплексы программ
  2. Доменный процесс — Знаешь как
  3. Восстановление кремния, марганца, фосфора и прочих элементов » Все о металлургии
  4. Роль флюсов в металлургии: применение и виды, доменный процесс в металлургии

Основные процессы доменной печи. Особенности производства чугуна

Схема доменного процесса
1 — железная руда + известняк; 2 — кокс; 3 — лента конвейера; 4 — колошник с аппаратом, предотвращающим уход доменного газа в атмосферу; 5 — слой кокса; 6 — слои известняка, оксида железа, руды; 7 — горячий воздух (с температурой около 1200 °C); 8 — шлак; 9 — жидкий передельный чугун; 10 — шлаковый ковш; 11 — чугуновоз; 12 — циклон для очистки доменного газа от пыли перед сжиганием его в регенераторах (13); 13 — регенераторы (кауперы); 14 — дымовая труба; 15 — подача воздуха в регенераторы (кауперы); 16 — порошок угля; 17 — коксовая печь; 18 — резервуар для кокса; 19 — газоотвод для горячего колошникового газа.

До́менный проце́сс

(доменная плавка) — процесс получения чугуна в доменной печи[1][2].

Представляет собой совокупность ряда самостоятельных физикохимических явлений, к которым относятся процессы восстановления оксидов и сложных соединений, разложения гидратов и солей, горения твердого, жидкого и газообразного горючего, твердофазные и гетерогенные химические реакции, теплообмен, движение твердых, жидких и газообразных составляющих и др.[1]

Специфика агрегата

Рассмотрим особенности устройства, его предназначение. Основные процессы доменной печи связаны с плавкой кокса. Он представляет собой пористый материал, который спекается из массы углерода, получаемой путем прокаливания каменного угля без присутствия кислорода воздуха.

Читайте также: Зачем пропан смешивают с бутаном, получая СУГ

Доменная печь – это мощный и высокопроизводительный агрегат, где расходуется существенное количество дутья и шихты.

Литература[ | ]

  • Вегман Е. Ф., Жеребин Б. Н., Похвиснев А. Н. и др.
    Металлургия чугуна : Учебник для вузов / под ред. Ю. С. Юсфина. — 3-е издание, переработанное и дополненное. — М. : ИКЦ «Академкнига», 2004. — 774 с. — 2000 экз. — ISBN 5-94628-120-8.
  • Дмитриев А. Н. и др.
    Основы теории и технологии доменной плавки. — Екатеринбург: УрО РАН, 2005. — 545 с. — ISBN 5-7691-1588-2.
  • Готлиб А. Д.
    Доменный процесс. — Москва: Металлургия, 1966. — 503 с.
  • Линчевский Б. В., Соболевский А. Л., Кальменев А. А.
    Металлургия черных металлов. — Москва: Металлургия, 1986. — 360 с.
  • Рамм А. Н.
    Современный доменный процесс. — Москва: Металлургия, 1980. — 303 с.
  • Бабарыкин Н. Н.
    Теория и технология доменного процесса. — Магнитогорск: ГОУ ВПО «МГТУ», 2009. — С. 15. — 257 с.
  • Газалиев А. М., Акбердин А. А., Сарекенов К. З., Конуров У.К.
    Компьютерное моделирование процессов доменной плавки. — Караганды: Издательство КарГТУ, 2015. — 169 с. — ISBN 978-601-296-868-2.

Загрузка сырья

Современная доменная печь предполагает нахождение в ней материалов в течение 4-6 часов, газообразных веществ – 3-12 секунд. Если газы будут полностью распределены по сечению печи, можно рассчитывать на высокие показатели плавки, идет производство чугуна. Доменный процесс предполагает учет движения газов по зонам, имеющим меньшее сопротивление шихты. Поэтому при ее загрузке в печь осуществляется регулировка, перераспределение кокса и агломерата по сечению печи так, чтобы они отличались по газопроницаемости. В противном случае больший процент газов будет уходить из печи со значительной температурой, что негативно отразится на применении тепловой энергии, доменный процесс будет не в полной мере эффективным.

На тех участках, которые имеют большое сопротивление, шихта газов будет проходить незначительно нагретой, потребуется дополнительный расход тепла в нижней части печи, в результате существенно возрастет расход сырья.

Какие еще особенности важно учитывать при загрузке? Доменный процесс получения чугуна – энергоемкое производство. Именно поэтому у стен печи используют слой менее газопроницаемого агломерата, в центре – увеличивают слой кокса, благодаря чему перераспределяется поток газа к центру. Материалы по окружности располагают равномерно.

Читать статью  Доменный процесс

Загрузка шихты осуществляется отдельными порциями – подачами. Одна порция состоит из нескольких скипов, рудной части (агломерата), кокса. Соотношение исходных ингредиентов определяют специалисты.

Доменный процесс допускает совместную подачу сырья, при которой скипы кокса и агломерата скапливают на большом конусе, а затем его загружают в печь.

Доменный процесс предполагает учет определенных закономерностей внесения сыпучих материалов:

  • укладка сырья, падающего с большого конуса, на колошнике с возвышением – гребнем;
  • у гребня (в месте падения) шихты накапливается мелочь, крупные куски скатываются к подножию гребня, поэтому в этой зоне газопроницаемость шихты больше;
  • на гребень влияет уровень засыпки на колошнике, а также расстояние с большим конусом;
  • большой конус опускается не полностью, благодаря чему на периферию попадают мелкие куски кокса.

В большей части в центр печи попадает материал из скипов подачи, которые последними загружались в большой конус. Если изменить порядок загрузки, то можно добиться перераспределения материалов по сечению колошника.

Для регулирования процесса распределения по объему печи используемой шихты применяют два конусных аппарата. В последнее время некоторые доменные печи оснащаются подвижными плитами у стенок колошника, позволяющие менять угол наклона, перемещать их по горизонтальной плоскости.

Куски шихты, которые падают на плиты, отражаются от них, что позволяет направлять сырье в определенные зоны колошника.

Примечания[ | ]

  1. 123
    Вегман и др., 2004, с. 216.
  2. Дмитриев, 2005, с. 26.
  3. Линчевский, 1986, с. 8—9.
  4. Линчевский, 1986, с. 9.
  5. Линчевский, 1986, с. 9—10.
  6. Дмитриев, 2005, с. 26—27.
  7. Готлиб, 1966, с. 90.
  8. Сибагатуллин С. К., Гущин Д. Н., Харченко А. С., Гостенин В. А., Сенькин К. В.
    Повышение содержания железа в агломерате изменением соотношения кон и Лебединского ГОК по лабораторным исследованиям (рус.) // Теория и технология металлургического производства. — 2014. — Т. 14, № 1. — С. 12—15.
  9. Линчевский, 1986, с. 64—65.
  10. Линчевский, 1986, с. 80—82.
  11. Линчевский, 1986, с. 81.
  12. Вегман и др., 2004, с. 361.
  13. Дмитриев, 2005, с. 208—209.
  14. Готлиб, 1966, с. 359.
  15. Дмитриев, 2005, с. 41—55.
  16. Вегман и др., 2004, с. 217.
  17. Линчевский, 1986, с. 69—75.
  18. Вегман и др., 2004, с. 219—220.
  19. Вегман и др., 2004, с. 222.
  20. Вегман и др., 2004, с. 273.
  21. Вегман и др., 2004, с. 273—274.
  22. Дмитриев, 2005, с. 134—138.
  23. Бабарыкин, 2009, с. 39.
  24. Вегман и др., 2004, с. 292—296.
  25. Захаров А. Ф., Вечер Н. А., Леконцев А. Н. и др.
    Качканарский ванадий / под. ред. В. И. Довгопола и Н. Ф. Дуброва. — Свердловск: Средне-Уральское книжное издательство, 1964. — С. 102. — 303 с.
  26. Дмитриев, 2005, с. 172—173.
  27. Д. Э. Манзор, Б. С. Тлеугабулов.
    Разработка технологии комплексной переработки ванадийсодержащих титаномагнетитов (рус.) // Technical science. — 2021. — Т. 1, № 1. — С. 13—15.
  28. Вегман и др., 2004, с. 479—515.
  29. Дмитриев, 2005, с. 295—344.
  30. Вегман и др., 2004, с. 757.
  31. Вегман и др., 2004, с. 758.
  32. Вегман и др., 2004, с. 764.
  33. Вегман и др., 2004, с. 766.
  34. Казармщиков И. Т.
    Производство основных конструкционных материалов. — Оренбург: ГОУ ОГУ, 2008. — С. 122. — 279 с.
  35. 12
    Автоматизация металлургических печей / Каганов В. Ю. [и др.] — М.: Металлургия, 1975. — с. 274.
  36. Климовицкий М. Д., Копелович А. П. Автоматический контроль и регулирование в чёрной металлургии. М., «Металлургия», 1967. с. 260

Цикл загрузки

Под ним принято называть повторяющееся количество порций шихтовых материалов. Максимальную порцию определяют по объему шлюзового бункера засыпного механизма. Количество порций в одном цикле может составлять от 5 до 14. Как получить в полном объеме продукты доменного процесса? Для того чтобы ответить на этот вопрос, подробнее рассмотрим суть процесса. При повышенном содержании в смеси углекислого газа низкая температура способствует полноте протекания теплообменных и химических процессов в доменной печи. Чтобы аппарат работал экономично и интенсивно, количественное содержание углекислого газа по оси и на периферии печи должно быть пониженным, а на высоте одного-двух метров от стен – повышенным.

Контроль температур в новых печах осуществляется путем введения через отверстия в кожухе зондов. Обязательным для всех процессов является контроль уровня засыпки на колошнике.

Среди новаций – применение бесконтактных способов измерения уровня, основанных на показаниях микроволновых, инфракрасных датчиков.

Критика и эффективность доменного процесса[ | ]

Доменные печи выплавляют основное количество первичного металла (в 2002 г. — более 95 %). Доменный процесс исторически подвергался критике. Только во второй половине XX столетия были по крайней мере две волны критики, предсказывавшие исчезновение доменного производства как самостоятельного металлургического передела. В 1960 годы это было связано с вовлечением в мировое хозяйство крупнейших месторождений нефти и газа. По прогнозам многих специалистов того времени, доля первичного металла, получаемого новыми альтернативными доменному способами производства, должна была достичь 40 % к 2000 году. Вторая волна критики относится к 1980 годам. Это было связано с точкой зрения негативного влияния металлургии на экологию. Лишь после появления в периодической печати серьёзных аналитических публикаций о роли различных отраслей народного хозяйства в изменении состояния окружающей природной среды отношение к металлургической промышленности изменилось в лучшую сторону[30].

Читайте также: Как сделать старую бумагу в домашних. Как сделать старую бумагу: простые способы

В XX веке традиционная схема получения черных металлов (подготовка сырья — доменное производство — получение стали в конвертерах) абсолютно доминировала в мировой промышленности. В 1990-е годы ежегодное мировое производство чугуна поддерживается на уровне 550—650 млн тонн, мировое производство железной руды — 960—980 млн тонн, окатышей — 230—240 млн тонн. Расчет на традиционную металлургическую схему характерен и для стран, быстрыми темпами развивающих металлургическую промышленность (Тайвань, Республика Корея и др.). Доля этих стран в мировом производстве черных металлов в начале 2000-х достигла 20 %. В 1990 г. 12,5 % общего мирового производства чугуна относилось к доменным печам, срок эксплуатации которых составил менее 10 лет[31].

Доменный процесс — один из немногих промышленных процессов, сохранивших свою сущность и значимость при всех технических революциях. Противоточный принцип процесса, осуществляемого в закрытом агрегате шахтного типа, обеспечивает максимальную утилизацию подводимой энергии в самом процессе и простоту использования отводимых продуктов. В современных доменных печах восстановительный потенциал отходящих газов приближается к термодинамически предельному, а температура колошникового газа становится менее 100 °С. Наличие углеродистой насадки обеспечивает уникальную, характерную только для доменной печи, особенность совмещения в одном агрегате трёх фазовых состояний шихты (твердого, жидкого и размягчённого), находящейся в противотоке с газовым потоком. Вместе с тем ход плавки в современных агрегатах характеризуется высокой устойчивостью при долговременно-непрерывном режиме работы. Это достигнуто длительным эволюционным развитием процесса с закреплением преимуществ, присущих шахтному противотоку. Результаты эволюции выразились в формировании уникальных свойств доменной печи, обеспечивающих устойчивое протекание процессов при высокой их эффективности[32].

Эволюционное развитие доменного процесса идет по пути сокращения расхода кокса. Доменные печи, работающие по современным технологиям на подготовленной шихте с низкой теплопотребностью, имеют суммарный расход энергоносителей в пределах 480—500 кг/т. Расход кускового кокса в этом случае составляет менее 300 кг/т, остальное топливо представлено некондиционным коксом, загружаемым сверху, пылевидным топливом, мазутом или природным газом, вдуваемым в горн доменной печи. Теоретические расчеты показывают, что суммарный расход энергоносителей может быть доведен до 350—400 кг/т[33].

Важнейшими показателями работы доменных печей являются среднесуточная производительность и расход кокса на единицу выплавляемого чугуна. Максимальная производительность доменных печей с применением приёмов интенсификации процесса плавки составляет 12000 т/сутки, а удельный расход кокса на лучших печах составляет 0,4 т/т чугуна. Для сравнительной оценки производительности доменных печей пользуются коэффициентом использования полезного объёма печи (КИПО), представляющим собой отношение величины полезного объёма печи к её среднесуточной производительности. В 2000-е годы рекордный коэффициент использования полезного объёма составлял 0,35 м3 × т / сутки[34].

Особенности распределения температур

Кроме тепла, которое вносится нагретым дутьем, в качестве основного источника тепла для нагревания газов и шихты, проведения восстановления и компенсации теплопотерь, компенсировать потери можно теплом, что выделяется при сгорании топлива в верхней части горна. По мере движения газообразных продуктов из горна вверх тепло опускается к шихтовым холодным материалам, происходит теплообмен. Подобный процесс объясняет понижение с 1400 до 200 градусов температуры на выходе из печного колошника.

Выведение избыточной влаги

Рассмотрим основные физические и химические процессы в доменной печи. В шихте, которая загружается в доменную печь, имеется гигроскопическая влага. К примеру, в составе кокса ее содержание может составлять до пяти процентов. Влага быстро испаряется на колошнике, поэтому для ее устранения требуется дополнительное тепло.

Появляется гидратная влага при загрузке в доменную печь бурого железняка, а также каолина. Для решения проблемы в современном производстве чугуна практически не применяют в качестве сырья данные руды.

Автоматизация доменного процесса[ | ]

Основными направлениями технического прогресса в доменном производстве являются улучшение подготовки сырых материалов, совершенствование технологии доменного процесса, строительство доменных печей большой мощности, механизация и автоматизация управления доменным процессом. Выделить следующие основные направления автоматического контроля:

  1. Химический состав и физические свойства шихтовых материалов.
  2. Загрузка шихтовых материалов.
  3. Состояние колошника.
  4. Состояние шахты печи.
  5. Параметры комбинированного дутья.
  6. Состояние горна.
  7. Технико-экономические показатели плавки.
  8. Работа воздухонагревателей[35].

Локальные системы стабилизации отдельных параметров доменного процесса[ | ]

Внедрение локальных систем стабилизации отдельных параметров доменного процесса явилось одним из первых этапов автоматизации доменного производства. Локальная система стабилизации расхода, температуры и влажности горячего дутья, давления колошникового газа, нагрева воздухонагревателей позволяет повысить производительность доменных печей и снизить потребление кокса. А внедрение систем автоматического управления подачей шихты, распределения горячего дутья и природного газа по фурмам доменной печи, автоматический перевод и управление нагревом воздухонагревателей, как правило, даёт дополнительный экономический эффект[36].

Локальные системы управления доменного процесса[ | ]

Системы автоматического управления отдельными режимами работы доменной печи называются локальными системами управления или подсистемами комплексного управления. На вход таких систем поступает информация, характеризующая соответствующий режим, а выходом системы является управления задатчиками локальных систем стабилизации, обслуживающих данный комплекс параметров. Основными локальными системами управления доменного процесса являются:

  1. Система управления шихтовки и шихтоподачи.
  2. Система управления теплового режима.
  3. Система управления распределения газового потока.
  4. Система управления хода доменной печи[35].

Процессы разложения карбонатов

Соли угольной кислоты могут поступать в доменную печь. По мере их нагревания происходит их разложение на оксиды кальция и углерода, а процесс сопровождается выделением достаточного количества энергии.

В последнее время в доменные печи почти не загружают руды. Какова роль флюсов в доменном процессе? Они повышают его эффективность, позволяют снижать затраты на производство. Благодаря использованию офлюсованного агломерата, полному выведению из доменной шихты известняка можно добиться существенной экономии кокса. Процесс разложения известняка при агломерации обеспечивается сгоранием топлива низкого сорта.

Восстановление железа

Железо вводится в доменную печь в виде оксидов. Основной задачей процесса является максимальное извлечение железа из оксидов путем восстановления. Суть процесса состоит в удалении кислорода, для этого используется углерод, угарный газ, водород. Восстановление углеродом называют прямым процессом, а реакцию с газообразными веществами именуют косвенным взаимодействием. Каковы их отличительные особенности? При прямой реакции расходуется углерод, в результате чего существенно сокращается его количество. Для второго вида восстановления железа из оксидов требуется избыточное количество водорода.

В ходе процесса образуется твердое железо. Степень восстановления в чугун составляет 99,8 %. Таким образом, только 0,2 -1 % превращаются в шлак.

Выплавка марганцовистых чугунов

В процессе выплавки переделываемых чугунов в доменную печь марганец попадает в виде агломерата. В некоторых количествах марганцевые руды в виде силикатов марганца способствуют получению марганцовистого чугуна.

Читайте также: Оборудование для огранки камней

Восстановление из оксидов марганца происходит ступенчато. Для того чтобы полностью провести процесс, в горне должны быть установлены высокие температуры. Процесс выплавки передельных чугунов сопровождается восстановлением марганца только в соотношении 55-65 %. В настоящее время из-за дефицитности марганцевых руд и марганца в технологической цепочке стали использовать незначительное количество марганцовистых чугунов. При переходе на маломарганцовистые чугуны можно экономить не только сам марганец, но и кокс, так как будет снижаться его расход на прямое восстановление металла.

Источник https://stromet.ru/domennyj-process/processy-vosstanovleniya-domennyj-process/

Источник https://kuban-stan.ru/masteru/domennyj-process.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *